

ACKNOWLEDGMENT

The authors wish to thank Professor A. van der Ziel and Dr. U. Lieneweg for many stimulating discussions.

REFERENCES

- [1] H. C. Torrey and C. A. Whitmer, *Crystal Rectifiers* (Massachusetts Institute of Technology Radiation Laboratory Series, vol. 15). New York: McGraw-Hill, 1948.
- [2] H. R. Fetterman *et al.*, "Submillimeter detection and mixing using Schottky diodes," *Appl. Phys. Lett.*, vol. 24, pp. 70-72, Jan. 15, 1974.
- [3] —, "Submillimeter heterodyne detection and harmonic mixing using Schottky diodes," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 1013-1015, Dec. 1974.
- [4] M. McColl, D. T. Hodges, and W. A. Garber, "Submillimeter-wave detection with submicron size Schottky barrier diodes," in *2nd Int. Conf. Winter School on Submillimeter Waves and their Applications—Conf. Dig.* (Dec. 1976), pp. 62-63.
- [5] M. McColl, W. A. Garber, and M. F. Millea, "Electron beam fabrication of submicrometer diameter mixer diodes for millimeter and submillimeter wavelengths," *Proc. IEEE*, vol. 60, pp. 1446-1447, Nov. 1972.
- [6] M. McColl, "Conversion loss limitations on Schottky-barrier mixers," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 54-59, Jan. 1977.
- [7] D. T. Hodges and M. McColl, "Extension of the Schottky barrier detector to 70 μm (4.3 THz) using submicron-dimensional contacts," *Appl. Phys. Lett.*, vol. 30, pp. 5-7, Jan. 1, 1977.
- [8] A. van der Ziel, "Infrared detection and mixing in heavily doped Schottky-barrier diodes," *J. Appl. Phys.*, vol. 47, pp. 2059-2068, May 1976.
- [9] G. C. Messenger and C. T. McCoy, "Theory and operation of crystal diodes as mixers," *Proc. IRE*, vol. 45, pp. 1269-1283, Sept. 1957.
- [10] B. J. Clifton *et al.*, "Materials and processing techniques for the fabrication of high quality millimeter wave diodes," in *Proc. 3rd Biennial Cornell Electrical Engineering Conf.* (Ithaca, NY, 1971), p. 463.
- [11] L. E. Dickens, "Spreading resistance as a function of frequency," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-15, pp. 101-109, Feb. 1967.
- [12] K. S. Champlin, D. B. Armstrong, and P. D. Gunderson, "Charge carrier inertia in semiconductors," *Proc. IRE*, vol. 52, pp. 677-685, June 1964.
- [13] S. M. Sze, *Physics of Semiconductor Devices* New York: Wiley, 1969, p. 40.

A Wave Approach to the Noise Properties of Linear Microwave Devices

R. P. MEYS

Abstract—Noise temperature or noise factor are important parameters for many microwave devices. Their dependence on source characteristics is classically established using low-frequency concepts such as impedance, admittance, voltage, and current sources. This paper presents a derivation of the noise properties of linear two-ports in terms of noise waves, which leads to a convenient measurement method in distributed systems.

I. INTRODUCTION

THE classical derivations for noise temperature and noise factor of linear two-ports use the equivalent circuit of Fig. 1(a) and lead to the results [1], [2]

$$T_n = T_{n \min} + T_0 \frac{R_n}{G_s} |Y_s - Y_{\text{opt}}|^2 \quad (1)$$

$$F_0 = F_{0 \min} + \frac{R_n}{G_s} |Y_s - Y_{\text{opt}}|^2. \quad (2)$$

Manuscript received March 22, 1977; revised May 27, 1977.
The author is with the Laboratoire d'Electronique Générale et Radioélectricité, Université Libre de Bruxelles, Brussels, Belgium.

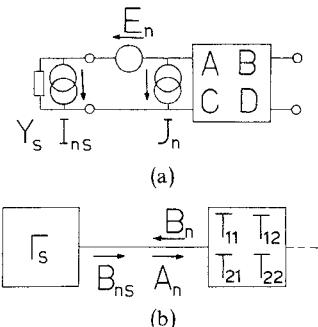


Fig. 1. (a) The classical representation of a linear noisy two-port. (b) The representation of a linear noisy two-port using noise waves.

Sometimes (1) and (2) are written as

$$T_n = T_{n \min} + 4T_0 \frac{R_n}{Z_0} \frac{|\Gamma_s - \Gamma_{\text{opt}}|^2}{|1 + \Gamma_{\text{opt}}|^2(1 - |\Gamma_s|^2)} \quad (3)$$

$$F_0 = F_{0 \min} + 4 \frac{R_n}{Z_0} \frac{|\Gamma_s - \Gamma_{\text{opt}}|^2}{|1 + \Gamma_{\text{opt}}|^2(1 - |\Gamma_s|^2)} \quad (4)$$

with

$$\Gamma_{\text{opt}} = (Y_0 - Y_{\text{opt}})/(Y_0 + Y_{\text{opt}});$$

$Z_0 = (1/Y_0)$ = characteristic impedance of the distributed system.

These last expressions are hybrid ones, containing the impedance parameter R_n and the wave parameter Γ_{opt} . The unknown quantities $T_{n\text{min}}$ ($F_{0\text{min}}$), R_n , Y_{opt} (Γ_{opt}) are determined either a) by a cut-and-try method using an automatic noise-figure meter, or b) by a set of measurements with various source admittances followed by a computation such as described in [2].

At microwave frequencies, however, a treatment of noise in terms of waves looks attractive. This was already done [3]. The analysis starts with the model of Fig. 1(b) and defines two uncorrelated noise waves A_n, B_n by

$$A_n = -\frac{E_n + Z_v J_n}{2\sqrt{\text{Re}(Z_v)}}$$

$$B_n = \frac{E_n - Z_v^* J_n}{2\sqrt{\text{Re}(Z_v)}}$$

where Z_v is a complex normalization impedance dependent on the device. This choice leads to theoretical simplicity, but does not suggest an easy-to-use measurement method.

II. NOISE REPRESENTATION BY CORRELATED WAVE SOURCES

Let us start with the same model [Fig. 1(b)], but simply define the noise-wave sources with reference to the characteristic impedance Z_0 of the line or waveguide mode used at the input. We now connect a source of reflection factor Γ_s and noise wave B_{ns} to the input. The total noise wave that would be incident on a noiseless matched load substituted for the device input is

$$A_{ns} = A_n + \Gamma_s B_n + B_{ns}$$

the squared modulus of which equals, assuming no correlation between source and two-port noise

$$|A_{ns}|^2 = |A_n|^2 + |\Gamma_s|^2 |B_n|^2 + 2 \text{Re}(\Gamma_s A_n^* B_n) + |B_{ns}|^2. \quad (5)$$

If we introduce the following notation:

$$\begin{aligned} |A_{ns}|^2 &= k T_{ns} \Delta f \\ |A_n|^2 &= k T_a \Delta f \\ |B_n|^2 &= k T_b \Delta f \\ A_n^* B_n &= k T_c \Delta f \cdot e^{i\phi_c} \\ \Gamma_s &= |\Gamma_s| e^{i\phi_s} \end{aligned}$$

where k is Boltzmann's constant and Δf is the frequency interval of interest, and consider that the source noise wave is given by

$$|B_{ns}|^2 = (1 - |\Gamma_s|^2) k T_s \Delta f$$

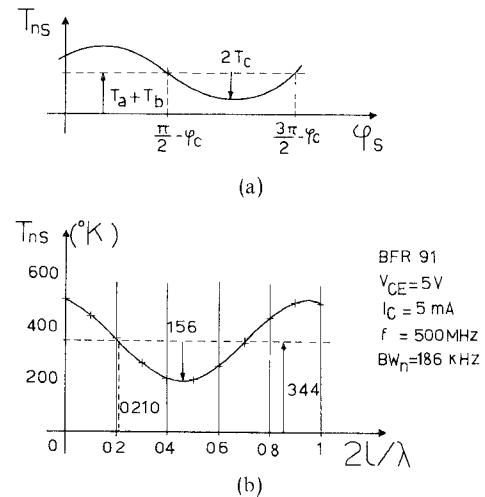


Fig. 2 (a) The total direct noise wave as a function of ϕ_s (b) An example of experimental results

(5) becomes

$$\begin{aligned} T_{ns} &= T_a + |\Gamma_s|^2 T_b + 2 T_c |\Gamma_s| \cos(\phi_s + \phi_c) \\ &\quad + T_s (1 - |\Gamma_s|^2). \end{aligned} \quad (6)$$

To entirely define the noise properties of the two-port, we must determine the four quantities which appear in (6): T_a , T_b , T_c , ϕ_c . The following procedure is proposed.

a) Connect an almost lossless source ($|\Gamma_s| \approx 1$) of variable ϕ_s to the input. Then observe

$$T_{ns} = T_a + T_b + 2 T_c \cos(\phi_s + \phi_c)$$

which is represented as a function of ϕ_s in Fig. 2(a). From this graph we deduce T_c , ϕ_c , $T_a + T_b$.

b) Connect a matched load of known temperature T_s to the input, so

$$T_{ns} = T_a + T_s$$

from which we deduce T_a .

III. EXAMPLE OF NOISE-WAVE SOURCES MEASUREMENT

The method has been applied as an example to a BFR91 transistor operating at $V_{CE} = 5$ V, $I_c = 5$ mA to determine its noise-wave sources around $f = 500$ MHz. The test setup for the measurement of T_{ns} with $|\Gamma_s| \approx 1$ is shown in Fig. 3(a). A waveguide below the cutoff attenuator is used in the reversed mode to inject a known sine wave. As the coupling is small and a short is connected at the third port, we realize very closely the condition $|\Gamma_s| = 1$. A variable-length line is placed between the attenuator and the DUT. The receiving system consists of a 500-MHz selective preamplifier, a first mixer and 50-MHz IF amplifier, a step attenuator, a second mixer and 5-MHz IF amplifier with calibrated noise bandwidth, and finally a quadratrical diode detector. First, with the IF attenuator on its reference position, the detector output is recorded. Then the IF attenuation is increased by A_{if} and a known sine wave is injected so as to recover the

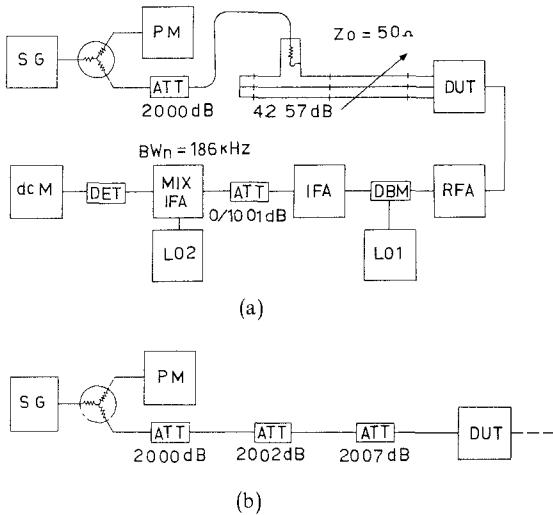


Fig. 3. (a) The measurement setup with $|\Gamma_s| = 1$ (b) The measurement setup with $|\Gamma_s| = 0$.

TABLE I
THE NUMERICAL RESULTS PERTAINING TO THE EXAMPLE

l (mm)	0	30	60	90	120	150	180	210	240	270	300
P_m (dBm)	46.80	47.34	48.28	49.59	50.70	50.80	49.85	48.49	47.78	46.88	46.86
T_{ns} (^o K)	499	441	355	263	203	199	247	338	427	490	492

same detector output as before. It is shown in the Appendix that under these conditions

$$T_{ns} = \frac{1}{A_{\text{if}}^2 - 1} \frac{1}{A_s^2} \frac{P_m}{kBW_n} \quad (7)$$

A_{if}^2 IF power attenuation;
 A_s^2 total power attenuation between power meter and DUT input;
 BW_n system-noise bandwidth;
 P_m power-meter reading.

The experimental results are shown in Table I. Fig. 2(b) is a plot of T_{ns} , as calculated from (7) with the attenuation and bandwidth values indicated on Fig. 3(a), versus the normalized variable-line length $21/l$. Conformity of the experimental curve to the theoretical sinusoid is almost perfect. From Fig. 2(b) we find

$$T_a + T_b = 344 \text{ K}$$

$$T_c = 78 \text{ K}$$

$$\frac{3\pi/2 - \phi_c}{2\pi} = 0.703 - 0.210$$

where the 0.703 term in the last equation is the phase of Γ_s for zero extension, which has been measured separately. The minus sign follows from the fact that $\arg(\Gamma_s)$ decreases as the line is extended.

The last step is to measure T_a . This step is, in fact, similar to the conventional measurement of noise temperature with

a matched source. It has been performed by modifying the test setup as shown in Fig. 3(b). Using the relation

$$T_a = \frac{1}{A_{\text{if}}^2 - 1} \frac{1}{A_s^2} \frac{P_m}{kBW_n} - T_s \quad (8)$$

(which is a special case of (7)), with T_s equal to the ambient temperature (301 K), $P_m = -49.51$ dBm, and with the attenuation values indicated on Fig. 3(a) and (b), we find $T_a = 172$ K.

IV. FROM NOISE WAVES TO NOISE TEMPERATURE AND NOISE FACTOR

The noise temperature T_n is defined as that temperature which must be added to the source temperature to account for the noise introduced by the linear two-port. Using this definition and (6) we obtain

$$T_n = \frac{T_a + |\Gamma_s|^2 T_b + 2T_c |\Gamma_s| \cos(\phi_s + \phi_c)}{1 - |\Gamma_s|^2}. \quad (9)$$

Let us now write (3) under the more compact form

$$T_n = T_{n\text{ min}} + T_d \frac{|\Gamma_s - \Gamma_{\text{opt}}|^2}{1 - |\Gamma_s|^2}. \quad (10)$$

Identification of (9) and (10) yields the results

$$T_a = T_{n\text{ min}} + T_d |\Gamma_{\text{opt}}|^2 \quad (11)$$

$$T_b = T_d - T_{n\text{ min}} \quad (12)$$

$$T_c = T_d |\Gamma_{\text{opt}}| \quad (13)$$

$$\phi_c = \pi - \phi_0 \quad (14)$$

with $\phi_0 = \arg(\Gamma_{\text{opt}})$. Inversion of the system of (11)–(14) yields

$$T_d = \frac{1}{2}(T_{ab} \pm \sqrt{T_{ab}^2 - 4T_c^2}), \quad (T_{ab} = T_a + T_b) \quad (15)$$

$$T_{n\text{ min}} = T_d - T_b \quad (16)$$

$$|\Gamma_{\text{opt}}| = \frac{T_c}{T_d} \quad (17)$$

$$\phi_0 = \pi - \phi_c \quad (18)$$

It is a simple matter to verify that only the + sign in (15) must be retained to satisfy the condition $|\Gamma_{\text{opt}}| < 1$. The corresponding equations for noise factor are readily obtained, if we bear in mind that

$$F_0 = 1 + \frac{T_n}{T_0}.$$

When applying (15)–(18) to our previous example, we find successively

$$T_d = 325 \text{ K}$$

$$T_{n\text{ min}} = 153 \text{ K}$$

$$|\Gamma_{\text{opt}}| = 0.240$$

$$\phi_0 = 87.5^\circ$$

which achieves the noise characterization of the device.

V. CONCLUSION

A description of the noise behavior of linear microwave devices has been proposed based on the four fundamental wave parameters T_a , T_b , T_c , ϕ_c . As the example has shown, they can be easily measured and lead, through simple formulas, to the traditional quantities T_n and F_0 . Sine waves have been used as power reference, but this is in no case a necessity. Use of calibrated noise sources is possible insofar as a sufficient power level is available to inject a noise wave of the same order of magnitude as the device's sources despite the small coupling required by the condition $|\Gamma_s| \simeq 1$. This usually avoids the need for working with a known noise bandwidth.

APPENDIX

If Γ_i designates the reflection factor at the device's input, the total incident noise wave actually is

$$\frac{1}{1 - \Gamma_s \Gamma_i} A_{ns}$$

giving rise at the output of the measurement setup to a power

$$P_0 = \alpha \frac{1}{|1 - \Gamma_s \Gamma_i|^2} \overline{|A_{ns}|^2}. \quad (19)$$

When a sine wave B_{ss} is injected, the total incident wave

becomes

$$\frac{1}{1 - \Gamma_s \Gamma_i} (A_{ns} + B_{ss}).$$

Following the principle of the measurement, this wave will give rise to the same output power as before, after attenuation by A_{if} , so

$$P_0 = \alpha \frac{1}{A_{if}^2} \frac{1}{|1 - \Gamma_s \Gamma_i|^2} (\overline{|A_{ns}|^2} + \overline{|B_{ss}|^2}). \quad (20)$$

From (19) and (20) it follows that

$$\overline{|A_{ns}|^2} = \frac{1}{A_{if}^2 - 1} \overline{|B_{ss}|^2}. \quad (21)$$

Substituting

$$|B_{ss}|^2 = \frac{P_m}{A_s^2} \quad \text{and} \quad \overline{|A_{ns}|^2} = k T_{ns} BW_n$$

in (21) leads to (7).

REFERENCES

- [1] H. Rothe and W. Dahlke, "Theory of noisy fourpoles," *Proc. IRE*, vol. 44, pp. 811-818, June 1956.
- [2] R. Q. Lane, "The determination of device noise parameters," *Proc. IEEE*, vol. 57, pp. 1461-1462, Aug. 1969.
- [3] P. Penfield, "Wave representation of amplifier noise," *IRE Trans Circuit Theory*, vol. CT-9, pp. 83-84, Mar. 1962.